
Home » Blogs » Everett Gaius's blog

Everett Gaius Vergara
I'm a Programmer and this is my Programming Journal (This website is not yet live)

How to Draw a Circle (Midpoint and Bresenham's Algorithm)

Submitted by Everett Gaius on Sun, 07/05/2020 - 10:26

With trigonometry func�ons such as sine and cosine, it is very easy to compute for the value of x and y for any given radius and teta.

px = cx + radius * cosine(0);

py = cy + radius * sine(0);

for (teta = 1; teta <= 360; ++teta)

{

 px = cx + radius * cosine(teta);

 py = cy + radius * sine(teta);

 line(px, py, x, y);

 px = x;

 py = y;

}

We've all learned this from highschool trigonometry class and it will not be tacked in this ar�cle. However, drawing a circle using these func�ons requires

the usage of floa�ng-point numbers which is slow, not to men�on the typecas�ng from floa�ng-point to integers as plo�ng a pixel requires integral

datatype. And finally, the big turnoff of this script is using the line segment func�on to connect the dots.

You can improve the above code by reducing the computa�onal complexity by dividing the circle to quadrants, octants, or whatever.

Midpoint Circle Algorithm

Understanding the algorithm starts with the circle formula

• x2 + y2 = r2

For simplicity of computa�on, we don't have to compute for the x and y of the en�re circle given r. We can divide it into quadrants, octants, or whatever

suits your preference. In our case, we will divide the circle by 8, which means we only need to compute 0 degrees to 45 degrees. Also to further simplify,

our circle will be centered at coordinates (0, 0).

How to Draw a Circle (Midpoint and Bresenham's Algorithm... https://www.everettgaius.com/article/how-draw-circle-midpo...

1 of 6 8/28/22, 11:37 AM

https://www.everettgaius.com/
https://www.everettgaius.com/
https://www.everettgaius.com/blog
https://www.everettgaius.com/blog
https://www.everettgaius.com/articles/everett-gaius
https://www.everettgaius.com/articles/everett-gaius
https://www.everettgaius.com/
https://www.everettgaius.com/
https://www.everettgaius.com/
https://www.everettgaius.com/
https://www.everettgaius.com/users/everett-gaius
https://www.everettgaius.com/users/everett-gaius

No�ce on the first octant, that y con�nually increases while xi+1 is either on the same posi�on as xi or xi - 1. We'll consider y as fast direc�on and x as the

slow direc�on in this case. This means that x decreases by some factor of the circle. But how do we get x based on the previous values of x and y?

For each point in the circle, the following formula holds, where i is the itera�on star�ng from 0.

• x2
i + y2

i = r2

To get the x we can rearrange the above to:

• x2
i = r2 - y2

i, the next point would be x2
i+1 = r2 - y2

i+1

Since y is the fast direc�on, y increases for every itera�on in the first octant, hence:

• y2
i+1 = (yi + 1)2

Let's subs�tute this to x2
i+1

• x2
i+1 = r2 - (yi + 1)2

• x2
i+1 = r2 - y2

i - 2yi - 1, we can simplify by the computa�on by replacing r2 - y2
i by x2

i, which gives us:

• x2
i+1 = x2

i - 2yi - 1

• xi+1 = √[x2
i - 2yi - 1]

Now that we a formula of x that is dependent on the previous value, we can start wri�ng our program. The following is wri�en in C/C++ and SDL

(actually all other programs below are wri�en using the same language and framework):

void drawCircle1(SDL_Surface* surface, Sint32 cx, Sint32 cy, Uint32 r, Uint32 rgba)

{

 Sint32 x, x2, xn, y, xsurface, ysurface;

// Center position the pointer

 Uint32* pixels = (Uint32*)surface->pixels + cx + (cy * surface->w);

// Starts plotting (0, 0)

 x2 = r * r;

 x = sqrt(x2);

 y = 0;

 while (x > y)

 {

 xn = (x2 - (2 * y) - 1);

 x = sqrt(x2);

 xsurface = x * surface->w;

How to Draw a Circle (Midpoint and Bresenham's Algorithm... https://www.everettgaius.com/article/how-draw-circle-midpo...

2 of 6 8/28/22, 11:37 AM

 ysurface = y * surface->w;

// First Octant

 *(pixels + x - (ysurface)) = rgba;

// The rest of the octants

 *(pixels + y - (xsurface)) = rgba;

 *(pixels - y - (xsurface)) = rgba;

 *(pixels - x - (ysurface)) = rgba;

 *(pixels + x + (ysurface)) = rgba;

 *(pixels + y + (xsurface)) = rgba;

 *(pixels - y + (xsurface)) = rgba;

 *(pixels - x + (ysurface)) = rgba;

 x2 = xn;

 ++y;

 }

}

Output:

It is important to take note that the upper le� coordinates of the screen is (0, 0), and x and y increase as we move southeastwards, therefore

adjustments are made to plot the first octant in the cartesian plane. The rest of the octants are computed accordingly.

Although the above script works, it could have been more elegant if floa�ng-point computa�on such as square root, and typecas�ng have been

eliminated.

Bresenham's Deriva�on of Drawing a Circle

To completely remove the floa�ng-point computa�on, we need to start with the so-called Radius Error (RE). RE is can be thought of as a devia�on of

computa�on of points. If we've detected a devia�on then we need to do correc�on in x posi�on (assuming we're working on the first octant). If we're

star�ng again with the first octant at (r, 0), we can say that REi, where i = 0, is zero (0), because we're sure that x = r and y = 0 at this point, and we can

plot these two values using integral data type, hence we can write:

• RE(xi, yi) = | x2
i + y2

i - r
2 | = 0, where | | denotes absolute value.

when i = 0, on first octant,

• RE(xi, yi) = | x2
i + 0 - r2 | = 0

Just like the Midpoint algorithm, and since we're star�ng with the first octant, we know that y is the fast direc�on and x is the slower. Therefore, as y

increments, x can either stay in the same posi�on or decrement by one (1). To give a solu�on to this, we define a decision statement to determine if we

need to retain the value of x or decrement the value of x as y increases.

RE(xi - 1, yi + 1) < RE(xi, yi + 1), if the value of the le� hand side is less than the right, then we plot RE(xi - 1, yi + 1), otherwise RE(xi, yi + 1).

To start the determina�on, let's subs�tute the value of RE. This gives us the following equa�on:

• = | (xi - 1)2 + (yi+ 1)2 - r2 | < | xi
2 + (yi + 1)2 - r2 |

Expanding the equa�on gives us

How to Draw a Circle (Midpoint and Bresenham's Algorithm... https://www.everettgaius.com/article/how-draw-circle-midpo...

3 of 6 8/28/22, 11:37 AM

• = | (x2
i - 2xi + 1) + (y2

i + 2yi + 1) - r2 | < | xi
2 + (y2

i + 2yi + 1) - r2 |

Rearranging will give us

• = | x2
i - 2xi + 1 + y2

i + 2yi + 1 - r2 | < | xi
2 + y2

i + 2yi + 1 - r2 |

• = | x2
i + y2

i - r
2 + 2yi + 1 + 1 - 2xi | < | xi

2 + y2
i - r

2 + 2yi + 1 |

• = | (x2
i + y2

i - r
2 + 2yi + 1) + (1 - 2xi) | < | (xi

2 + y2
i - r

2 + 2yi + 1) |

Since absolute func�on | | requires addi�onal library, we replace it by squaring both sides of the equa�on.

• = [(x2
i + y2

i - r
2 + 2yi + 1) + (1 - 2xi)]2 < [(xi

2 + y2
i - r

2 + 2yi + 1)]2

Expanding the le� hand side of the equa�on gives us:

• = (x2
i + y2

i - r
2 + 2yi + 1)2 + 2(1 - 2xi)(x

2
i + y2

i - r
2 + 2yi + 1) + (1 - 2xi)

2

• < (xi
2 + y2

i - r
2 + 2yi + 1)2

Canceling out (xi
2 + y2

i - r
2 + 2yi + 1)2

• = 2(1 - 2xi)(x
2

i + y2
i - r

2 + 2yi + 1) + (1 - 2xi)
2 < 0

And since we know that x > 0 in the first octant, the term (1 - 2xi) < 0, dividing both sides will cancel out the nega�ve, giving us

• (a) = 2 [x2
i + y2

i - r
2 + 2yi + 1]+ (1 - 2xi) > 0

• (b) or simply = 2 [RE (xi, yi) + Ychange] + Xchange > 0

If the statement is true, then we decrement the value of x, otherwise, x stays at the same posi�on.

Consider statement (a), to translate the decision statement to program, we write:

void drawCircle2(SDL_Surface* surface, Sint32 cx, Sint32 cy, Sint32 r, Uint32 rgba)

{

 Sint32 x, x2, xn, y, y2, r2, re, xsurface, ysurface;

// Center position the pointer

 Uint32* pixels = (Uint32*)surface->pixels + cx + (cy * surface->w);

 r2 = r * r;

 x = r;

 x2 = x * x;

 y = 0;

 while (x > y)

 {

 xsurface = x * surface->w;

 ysurface = y * surface->w;

 y2 = y * y;

 re = x2 + y2 - r2;

 if ((2 * re) + (4 * y + 2) + (1 - (2 * x)) > 0)

 {

 --x;

 x2 = x * x;

 }

// First Octant

 *(pixels + x - (ysurface)) = rgba;

How to Draw a Circle (Midpoint and Bresenham's Algorithm... https://www.everettgaius.com/article/how-draw-circle-midpo...

4 of 6 8/28/22, 11:37 AM

// The rest of the octants

 *(pixels + y - (xsurface)) = rgba;

 *(pixels - y - (xsurface)) = rgba;

 *(pixels - x - (ysurface)) = rgba;

 *(pixels + x + (ysurface)) = rgba;

 *(pixels + y + (xsurface)) = rgba;

 *(pixels - y + (xsurface)) = rgba;

 *(pixels - x + (ysurface)) = rgba;

 ++y;

 }

}

The above script can s�ll be further improved by elimina�ng mul�plica�on in the script by the following:

• bit shi�ing to the le� one �me mul�plies the integer by 2, bit shi�ing to the le� two �mes mul�ples the integer by 4 (refer to drawCircle3()

func�on in a�ached .cpp file)

• Consider the 3 quan��es in the equa�on at close inspec�on and determine their values at different values of xi and yi. Let's find a way to do it

itera�vely to reduce the computa�onal complexity (removal of squares - mul�plica�on).

◦ RE (xi, yi) = x2
i + y2

i - r
2

◦ Ychange = 2yi + 1

◦ Xchange = 1 - 2xi

• Since we're star�ng with x =r, y = 0, and RE (x0, y0) = 0, let's set RE ini�ally to 0, Ychange = 1, and Xchange = 1 - (2 * r);

• We increment RE byYchange every itera�on since, y is in the fast direc�on.

• We increment Ychange by 2 based on the formula.

• We compare (2 x RE + Xchange > 0), if true then that's the �me we decrement x and increment RE by Xchange and increment Xchange y 2 based on

the formula.

The complete program of plo�ng a circle using integer arithme�c is shown below:

void drawCircle4(SDL_Surface* surface, Sint32 cx, Sint32 cy, Sint32 r, Uint32 rgba)

{

 Sint32 x, y, xsurface, ysurface;

 Sint32 xchange, ychange, re;

// Center position the pointer

 Uint32* pixels = (Uint32*)surface->pixels + cx + (cy * surface->w);

 x = r;

 y = 0;

 xsurface = x * surface->w;

 ysurface = y * surface->w;

 xchange = 1 - (r << 1);

 ychange = 1;

 re = 0;

 while (x > y)

 {

// First Octant

 *(pixels + x - (ysurface)) = rgba;

// The rest of the octants

 *(pixels + y - (xsurface)) = rgba;

 *(pixels - y - (xsurface)) = rgba;

How to Draw a Circle (Midpoint and Bresenham's Algorithm... https://www.everettgaius.com/article/how-draw-circle-midpo...

5 of 6 8/28/22, 11:37 AM

GFX Algorithms

Bresenham's Algorithm C++ Circle SDL Midpoint Circle Algorithm

 *(pixels - x - (ysurface)) = rgba;

 *(pixels + x + (ysurface)) = rgba;

 *(pixels + y + (xsurface)) = rgba;

 *(pixels - y + (xsurface)) = rgba;

 *(pixels - x + (ysurface)) = rgba;

 ++y;

 re += ychange;

 ychange += 2;

 if ((re << 1) + xchange > 0)

 {

 --x;

 xsurface -= surface->w;

 re += xchange;

 xchange += 2;

 }

 ysurface += surface->w;

 }

}

So there you go, an elegant solu�on (with an explana�on of the deriva�on) as to how you can draw a circle efficiently. Feel free to play around with the

codes and import it to your programming language of choice.

A�achments:

Circle.cpp

Tags:

Everett Gaius's blog

How to Draw a Circle (Midpoint and Bresenham's Algorithm... https://www.everettgaius.com/article/how-draw-circle-midpo...

6 of 6 8/28/22, 11:37 AM

https://www.everettgaius.com/tags/gfx
https://www.everettgaius.com/tags/gfx
https://www.everettgaius.com/tags/algorithms
https://www.everettgaius.com/tags/algorithms
https://www.everettgaius.com/secondary-tags/bresenhams-algorithm
https://www.everettgaius.com/secondary-tags/bresenhams-algorithm
https://www.everettgaius.com/secondary-tags/c
https://www.everettgaius.com/secondary-tags/c
https://www.everettgaius.com/secondary-tags/circle
https://www.everettgaius.com/secondary-tags/circle
https://www.everettgaius.com/secondary-tags/sdl
https://www.everettgaius.com/secondary-tags/sdl
https://www.everettgaius.com/secondary-tags/midpoint-circle-algorithm
https://www.everettgaius.com/secondary-tags/midpoint-circle-algorithm
https://www.everettgaius.com/sites/default/files/attachments/Circle_0.cpp
https://www.everettgaius.com/sites/default/files/attachments/Circle_0.cpp
https://www.everettgaius.com/articles/everett-gaius
https://www.everettgaius.com/articles/everett-gaius

